Полезное

Организация контроля качества в химической лаборатории. Особенности организации внутрилабораторного контроля качества результатов анализа. Метод контрольных карт

Организация контроля качества в химической лаборатории. Особенности организации внутрилабораторного контроля качества результатов анализа. Метод контрольных карт

Обратим внимание на следующее. Рекомендации РМГ 76 разработаны с учётом и в развитие требований международных стандартов серии ГОСТ Р ИСО 5725 (далее 5725), в первую очередь 6-й её части , касающейся ВЛК. Так вот, из двух интересующих нас видов контроля в последнем документе присутствует только проверка приемлемости. Оперативный контроль здесь не регламентируется. И в этом, думается, одна из причин упомянутого выше «смешивания»: при изучении оперативного контроля по РМГ 76, где, как заявлено, развиваются положения 5725, хочется найти в «родительском» документе первоисточник, и в качестве такового может «подвернуться» очень похожая проверка приемлемости.

Что касается наследования, то здесь нужно сказать, что организацией ФГУП «УНИИМ» разработана и выпущена инструкция МИ 2881-2004 (далее МИ 2881), играющая для проверки приемлемости ту же роль, что и РМГ 76 для ВЛК, а также РМГ 64-2003 для оценивания показателей точности . Наглядно это наследование изображено на схеме . Заметим, что помимо алгоритмов и методов, наследуемых из 5725, разработанные РМГ/МИ содержат свои собственные, и весьма значительные, добавления.

В контексте настоящей статьи необходимо также учитывать некоторые положения и алгоритмы, содержащиеся в нормативных документах (НД) на методики выполнения измерений (МВИ). Дело в том, что в этих документах, как отечественных, так и зарубежных, в той или иной степени также регламентируется контроль погрешностей. Большинство документов по МВИ создавались либо до внедрения документов , либо без их учёта. Из-за этого возникают определённые методические трудности для согласованного их использования совместно с регламентированными в новых документах методами ВЛК . Об этом речь будет идти далее.

Показатели качества

При проведении любых видов ВЛК основным критерием для принятия решений является сравнение получаемых при измерениях значений с контрольными пределами. Эти пределы вычисляются на базе показателей качества методик анализа или показателей качества результатов анализа . Терминология и методология их установления и использования имеет ряд особенностей. Рассмотрение их важно для дальнейшего изложения.

Анализ терминологии

Относящиеся к ВЛК термины и определения встречаются во многих НД. Между ними не всегда имеется строгая синхронизация. А для однозначной трактовки используемых формулировок зачастую требуется дополнительный анализ. Ниже рассматриваются некоторые проблемные понятия, важные для оперативного контроля.

Измеряемые значения

Без ограничения общности можно считать, что конечным итогом проведения любого КХА – другими словами измерения по МВИ – является некоторое числовое значение, выдаваемое в качестве результата для использования его в тех или иных целях. В 5725 такое значение называется результатом измерений , в РМГ 76 – результатом контрольного измерения , в МИ 2881 и РМГ 76 – результатом анализа . В других НД, в частности на методики измерений, могут встречаться и отличные названия, например окончательный результат . Мы будем придерживать термина результат измерения .

Другими важными для нас «объектами», фигурирующими в КХА, являются значения, полученные в результате двух или более повторений всех шагов измерения и используемые для усреднения с целью получения результата измерения (иногда вместо усреднения вычисляется медианы – см. далее). В 5725 это – единичные наблюдения , в РМГ 76 – результаты контрольных определений , в МИ 2881 и РМГ 76 – результаты единичных анализов (единичных определений) . Иногда также применяется термин параллельные определения , где слово «параллельные» означает получение всех значений в условиях повторяемости (см. далее). Мы будем придерживаться сочетания результат(ы) параллельного(ых) определения(ий) , поскольку условия повторяемости в рассматриваемых далее алгоритмах должны соблюдаться всегда.

Особенности показателя повторяемости

На практике при трактовке параметров погрешностей, приводимых в различных НД, возникают определённые трудности. Не в последнюю очередь это связано с неоднозначностью трактовки, в том или ином контексте, некоторых терминов, что было проиллюстрировано выше. Есть и другие причины.

Стандарты 5725 «пришли к нам» из-за рубежа и, вообще говоря, без адаптации (это аутентичный перевод). Применять же их нужно, в первую очередь, к отечественным МВИ. Но в практике составления зарубежных и отечественных НД на методики сложились различия.

Зарубежные НД практически никогда не регламентируют усреднение для получения результата измерений, поэтому та или иная форма термина «параллельные определения» в них отсутствует. (По крайней мере это подтверждается нашим анализом нескольких десятков американских и международных стандартов – ASTM и ISO соответственно, – используемых на предприятиях нефтепереработки.) Как итог, документы 5725 оперируют только результатами измерений и никогда – результатами параллельных определений (в том смысле, как это понимается в рассматриваемых здесь РМГ/МИ). Это в полной мере относится и к определению повторяемости , которая в 5725-6 (см. п.п. 3.12–14) определяется как степень близости независимых результатов измерений в условиях повторяемости. А это, в свою очередь, означает, что для того, чтобы реализовать какую-либо разновидность контроля повторяемости, необходимо дважды полностью (от начала до конца) выполнить МВИ .

Примечание. Именно из-за этого для повторяемости в 5725 количество параллельных измерений (не определений!) всегда равно 2.

Совсем иная картина наблюдается в отечественных НД на методики. Здесь практически всегда (если специфика МВИ это допускает) на последнем этапе для получения результата измерения регламентируется усреднение по двум или более результатам параллельных определений. Из статистики нетрудно понять, что разброс усреднённых результатов измерений , выполненных в условиях повторяемости, будет пропорционален разбросу используемых для усреднения результатов , в нашем случае параллельных определений (коэффициент пропорциональности равен, где n – количество этих определений). В связи с этим возникает естественное желание не делать для контроля повторяемости повторное измерение, как это регламентировано в 5725, а «удовлетвориться» уже полученными в первом измерении результатами параллельных определений. Что, собственно, и регламентируется в РМГ/МИ.

Правильно это или нет, дело вкуса. Но одно несомненно: в 5725 и в наследуемых РМГ/МИ повторяемость определяется по-разному . В первом случае это близость результатов измерений , во втором – близость результатов параллельных определений . Это может приводить к затруднениям при изучении и сравнении относящихся к ВЛК документов. К примеру, такая цитата из 5725 (стр. V): «экстремальные показатели прецизионности – (это) повторяемость, сходимость и воспроизводимость» – однозначно говорит, что повторяемость и воспроизводимость трактуются здесь как предельные значения чего-то одного (прецизионности). Но в РМГ это разные понятия: повторяемость относится к результатам параллельных определений, воспроизводимость – к результатам измерений.

Примечание. Осознание этого факта поможет преодолеть интуитивное предубеждение, что повторяемость всегда больше воспроизводимости. Если факторы, влияющие на разброс результатов измерений за счёт смены испытателей, оборудования, времени суток и т.д., незначительны (например в опытах в пределах лаборатории), то влияние вполне может оказаться преобладающим, и повторяемость превысит воспроизводимость.

Вышеизложенное важно для практической интерпретации характеристик погрешностей, приводимых в НД на МВИ, с целью их использования в ВЛК. Это рассматривается ниже.

Состав показателей качества

Как известно, ВЛК оперирует четырьмя показателями качества методики/результатов:

    повторяемости, или сходимости (одно и то же для методики и результатов);

    воспроизводимости (для методики) / внутрилабораторной (ВЛ) прецизионности (для результатов);

    правильности (разные для методики и для результатов);

    точности (разные для методики и для результатов).

Приведём некоторые особенности перечисленных показателей.

    Стандарты 5725 оперирует только показателями качества методики.

    Показатели правильности в оперативном контроле и проверке приемлемости не используются.

    Показатели точности выражаются в виде доверительного интервала погрешности результатов анализа и обычно проблем с трактовкой не имеют. Обозначаются как Δ и Δ л для методики и результатов соответственно (здесь и далее индекс «л» означает «лабораторный»).

    Показатель воспроизводимости. Как упоминалось выше, считается предельным случаем показателя прецизионности в условиях воспроизводимости, поэтому далее он и показатель ВЛ прецизионности будут называться просто показателями прецизионности. В математическом аппарате в РМГ/МИ в качестве основного для этих показателей используется представление в виде среднеквадратического отклонения (СКО), обозначаемого как σ R . и σ Rл. В то же время в НД на методики чаще используется предел прецизионности для двух результатов измерений. Наиболее распространённое обозначение R и R л.

    Показатель повторяемости в РМГ/МИ также принято выражать в виде СКО, но теперь уже параллельных определений, и обозначать как σ r (считается, что σ rл = σ r как предельное значение «прецизионности параллельных определений» в условиях повторяемости). По аналогии с прецизионностью, в НД на методики чаще используется предел повторяемости r для n параллельных определений.

Трактовка погрешностей в НД на МВИ

Большинство отечественных НД создавались до появления (или без учёта) 5725 и наследуемых документов, так что формы представления в них погрешностей достаточно разнообразны и значительно отличаются от того, что «хотелось бы видеть». Мы не будем здесь касаться вопросов аналитического представления (проще говоря, формул) зависимостей показателей погрешностей от измеряемого значения (это будет рассмотрено в других публикациях), а обратимся к особенностям, связанным с возможным видом их представления: СКО или предел.

Итак, чтобы непосредственно (без преобразований формул) воспользоваться математикой ВЛК, необходимо выполнить два шага:

Шаг 1. Привести показатели повторяемости и прецизионности к СКО, если они заданы в виде пределов. Для воспроизводимости это означает выполнение преобразования σ R = R/Q(P, 2) º R/2,77, для повторяемости – σ r = r/Q(P, n). При этом, с учётом предыдущего раздела, нужно внимательно отслеживать, какая повторяемость представлена в НД. Например, в ASTM D 1319–03 регламентировано всё-таки, вопреки тому, что утверждалось выше по поводу зарубежных стандартов, усреднение по представительной выборке. Но так как стандарт зарубежный, то, как мы уже знаем, в нём повторяемость задаётся для двух результатов измерений. И верным будет соотношение σ r = r/Q(P, 2). Тем более что количество усредняемых значений n представительной выборки из данного документа не узнать.

Шаг 2. Установить каким-либо способом ВЛ показатели прецизионности и точности (для повторяемости, как мы знаем, в качестве внутрилабораторного используется показатель методики). В идеале это проведение специального эксперимента по оцениванию (приложение В в РМГ 76). Возможна также оценка по результатам контрольных карт (КК). Это всё – экспериментальные методы. В РМГ 76 регламентированы также (п.4.7) расчётные способы оценки. И хотя они рассматриваются там как временные: должны применяться лабораторией только на стадии внедрения МВИ, – на практике (например в стандартах предприятия или руководствах по качеству лабораторий) их довольно часто рассматривают как «окончательные». В этом есть определённый смысл. И вот почему.

У контроля качества результатов измерений есть две цели:

    Отслеживать стабильность процессов производства, а значит и одной из важных его составляющих – процесса контроля качества материалов и продукции.

    Гарантировать заявленную погрешность продукции, а значит и главный её критерий – погрешность методик испытаний.

Первая задача, вообще говоря, является внутренней для предприятия или лаборатории. «Философия» примерно такова: если производство налажено, желательно, чтобы оно было стабилизировано. А для этого желательно, чтобы был стабилизирован и процесс измерений. Поэтому изменения в погрешностях результатов измерений, даже если они не нарушают погрешностей, заявленных в НД на МВИ, являются нежелательными. То есть – эта задача требует установления ВЛ показателей качества результатов измерений и впоследствии их контроля.

Вторая задача ориентирована на заказчика, будь то внешнего или внутреннего. И, по большому счёту, его интересует гарантирование погрешности результатов измерений, заявленной в НД на МВИ. То есть – контролироваться должны показатели качества методик измерений.

Примечание. Иногда желательно уменьшить заявляемые погрешности измерений. Например в экологических испытаниях, где эти погрешности учитываются в нормативах контроля, превышение которых влечёт за собой штрафные санкции. В таких случаях, разумеется, также потребуются внутрилабораторные показатели.

Из сказанного следует, что существуют ситуации, когда целесообразно использовать для контроля исключительно показатели качества методик. То есть поступать так, как это непосредственно прописывается в НД на эти методики. В этом смысле использование расчётных показателей по РМГ 76 является неким компромиссным решением и вполне допустимо, если оно принято осознанно и зафиксировано в руководстве по контролю качества лаборатории. Правда, в этом случае может потребоваться некоторая коррекция расчётов, в том числе и при программировании приложений поддержки ВЛК.

В заключение раздела коснёмся небольшого вопроса, вызывающего иногда затруднения на практике. Речь идёт о выборе формул для оценки расчётных показателей. В РМГ 76 (п.7.4) приводится два набора:

    первый набор характеризуется тем, что все показатели, кроме повторяемости, умножаются на 0,84. Должен применяться, когда для данной МВИ не планируется использование КК,

    второй набор характеризуется тем, что показатель погрешности не остаётся без изменений, а показатель правильности пересчитывается (с новой прецизионностью). Должен применяться, когда КК для МВИ планируются.

Обоснование всему этому, видимо, таково. При ведении КК рано или поздно будут сделаны регламентируемые в РМГ оценки внутрилабораторных показателей, будет выполнено их протокольное оформление для последующего использования в ВЛК. Если же ведение КК не планируется, «приходится слегка подправить» показатель погрешности.

Примечание. Употреблённое выше «слегка подправить», умножив на 0,84 (или, что то же самое, разделив на 1,2), с точки зрения статистики означает сужение интервала погрешности до уровня доверительной вероятности 0,9.

Алгоритмы процедур контроля

Образцы (контролируемые или используемые для контроля)

Согласно РМГ 76, оперативный контроль проводится время от времени при наступлении определённых событий, таких как смена партии реактивов, использование средств измерений после ремонта, новая серия рабочих проб и т.п. В то же время согласно МИ 2881 (как и 5725-6) проверка приемлемости единичных результатов осуществляют при получении каждого результата анализа рабочих проб. иллюстрирует такое соотношение между рассматриваемыми образцами.

Примечание. Существует некая неоднозначность в том, как употреблять термины проба , образец , измерение и пр. В частности, когда в целях контроля выполняется сразу несколько измерений или назначается повторное измерение. Если измерения неразрушающие, уместно, видимо, говорить об измерениях . В противном случае более точным будет термин образец (повторный или аликвотный). Думается, эта неоднозначность не приведёт к недоразумениям при чтении статьи.


Рис. 2 «Встраивание» образцов оперативного контроля в последовательность рутинных испытаний, проводимых по конкретной МВИ

Проверка приемлемости

По некоторым соображение рассмотрение интересующих нас алгоритмов контроля удобно начать с проверки приемлемости результатов, хотя это и не основная тема статьи.

Проверку приемлемости применяют к результатам, получаемым в условиях повторяемости или воспроизводимости. Последняя ситуация рассматриваться не будет, так как проверка приемлемости в этом случае относится в основном к взаимоотношениям между лабораториями, например между поставщиком и потребителем, что «далеко» от оперативного контроля.

Примечание. Напомним, что условиями повторяемости называются такие условия, когда измерения выполняются «по одной и той же методике на идентичных пробах в одинаковых условиях (один и тот же оператор, одна и та же установка и т.п.) и практически в одно и то же время (то есть подряд)». Условиями же воспроизводимости называются условия, когда имеется одна и та же методика и используются идентичные пробы, а всё остальное меняется. Чаще всего речь идёт об измерениях в различных лабораториях.

Согласно МИ 2881 проверка приемлемости в условиях повторяемости (далее в тексте условия уточняться не будут) применяется к результатам параллельных определений отдельных результатов. Проверка применяется к рутинным пробам (на – верхний ряд), причём ко всем. И если это так, то говорят, что измерения выполняются с проверкой приемлемости.

В 5725 даётся несколько иное определение. Связано это с тем, что, как отмечалось выше, в зарубежных НД «нет» параллельных определений. Поэтому в ситуациях с повышенными требованиями к результатам измерений процедура МВИ может выполняться два или более раз подряд и подвергаться контролю приемлемости для установления окончательного результата по этим измерениям. Такой алгоритм может быть прописан, например, в технических условиях (ТУ) на продукцию или в договоре. В отличие от отечественной практики, где выполнение «нескольких измерений подряд» называется параллельными определениями или чем-то подобным прописывается непосредственно в НД на МВИ.

Несмотря на расхождение в терминологии и некоторые нюансы, алгоритм проверки (), регламентированный в МИ 2881, фактически полностью совпадает с соответствующим алгоритмом 5725-6.

Примечание. В 5725-6 имеется также алгоритмы с получением другого количества дополнительных результатов. Принципиально они не отличаются от приведённого на .

Рис. 3 Алгоритм проверки приемлемости результатов измерений по 5725-6

Отметим следующие важные моменты:

    Контролируется (проверяется) только повторяемость.

    Результатом проверки приемлемости является установление результата измерения.

    Количество единичных результатов измерений, по которому определяется результат измерения, зависит от хода проверки приемлемости.

    Результат измерения может выражаться не только в виде среднего, но и в виде медианы.

Стоит сказать ещё вот о чём. В большинстве отечественных НД на МВИ регламентируется проверка приемлемости в виде простой проверки «в норме / не в норме». Фактически это означает, что в случае неудовлетворительной проверки результат попросту перемеряется.

Особая ситуация в зарубежных НД. Стандартная формулировка в них: «разница между двумя результатами может превышать контрольный предел только в одном случае из двадцати» (5% в соответствии с принятой в лабораторной практике доверительной вероятностью 0,95). Фактически здесь не идёт речь о повторных или дополнительных измерениях, а об отслеживании данных за некоторый промежуток времени. Последовательное применение этого положения приведёт к чему-то похожему на ведение КК.

Как в описанных случаях применить алгоритм , не нарушая НД? Ответ дан в МИ 2881: следует записать новый алгоритм в ТУ, руководство по качеству и т.п.

Последнее замечание. При реализации алгоритма затруднения может вызвать то обстоятельство, что ни в 5725, ни в МИ не регламентируется способ определения опорного значения, по которому вычисляется норматив контроля в случаях, когда показатель повторяемости зависит от измеряемой величины. Видимо, не остаётся ничего другого, как брать в качестве X оп текущее среднее значение, даже если затем в качестве окончательного результата будет использована медиана. Думается, это достаточно эффективно, поскольку вероятность такого события (необходимость медианы) крайне мала: при доверительной вероятности 0,95 два подряд нарушения повторяемости будут наступать в одном случае из 400 (0,25%).

Оперативный контроль

В отличие от проверки приемлемости, оперативный контроль проводится на специальных, дополнительных по отношению к рутинным, пробах (на Рис. 2 – нижний ряд). Даже если предположить, что в каких-то случаях только что испытанная рутинная проба тут же «включается» в оперативный контроль, скажем в методе добавок, всё равно это будет именно контрольное испытание, но с «некоторыми особенностями» получения первого измерения. К тому же такую практику нельзя признать целесообразной, так как в этом случае не так-то просто достигнуть точного соблюдения регламента оперативного контроля в соответствии с РМГ 76.

Алгоритмы оперативного контроля подразделяются на две категории:

Контроль повторяемости

Как отмечено выше, контроль повторяемости является вспомогательным: он должен, согласно п.5.10.2 в РМГ 76, применяться к результатам измерений, выполняемых внутри алгоритмов оперативного контроля погрешности (а также в не рассматриваемых здесь периодическом и выборочном статистическом контролях). Напомним, что контроль повторяемости выполняется только для МВИ, у которых для получения результата измерения предусмотрены параллельные определения.

Одной из процедур системы обеспечения качества аналитических работ является внутренний контроль качества результатов анализа.

Аттестованную методику (ФЗ «Об обеспечении единства измерений», Гл. 2, Ст. 5), прежде чем начать реализовывать в лаборатории, необходимо внедрить (ГОСТ ИСО/МЭК 17025:2009, п. 5.4.2). При внедрении методики анализа в лаборатории должны быть установлены показатели качества результатов анализа и проведена проверка их соответствия показателям качества методики анализа.

Элементами системы внутреннего контроля являются:

  • оперативный контроль процедуры анализа;
  • контроль стабильности результатов анализа.

Оперативный контроль процедуры анализа осуществляет исполнитель анализа с целью проверить готовность лаборатории к проведению анализа рабочих проб. Оперативный контроль процедуры анализа может быть организован ответственным за контроль качества результатов анализа.

Оперативный контроль процедуры анализа проводят:

  • при появлении факторов, которые могут повлиять на стабильность процесса анализа (смена партии реактивов, использование СИ после ремонта и т.д.);
  • при получении двух из трех последовательных результатов анализа рабочих проб на основе числа результатов параллельных определений большего, чем предусмотрено методикой анализа (в соответствии с процедурой, описанной в ГОСТ Р ИСО 5725-6-2002);
  • с каждой серией рабочих проб.

Контрольные процедуры могут быть реализованы:

  • с применением образца контроля;
  • с применением метода добавок;
  • с применением метода разбавления;
  • с применением метода добавок совместно с методом разбавления пробы;
  • с применением метода варьирования навески;
  • с применением контрольной методики анализа.

Оперативный контроль является наиболее простым способом ВЛК, но он не является единственным, необходимо также проводить контроль стабильности результатов анализа. Основное отличие контроля стабильности от оперативного контроля в том, что при реализации оперативного контроля вывод о том, удовлетворительна процедура анализа или нет, делается на основании одной контрольной процедуры. Контроль стабильности проводится в течение контрольного периода времени, с определенной периодичностью.

Наиболее наглядный способ контроля стабильности – с использованием контрольных карт.


В целях обеспечения стабильности результатов анализа одновременно и регулярно строят контрольные карты для контроля показателей повторяемости, внутрилабораторной прецизионности и точности результатов анализа.

Существует два вида контрольных карт:

  • карты Шухарта;
  • кумулятивных сумм.

При выявлении лабораторией несоответствий процедур или результатов ВКК установленным правилам и нормативам, лаборатория проводит анализ и оценку выявленных несоответствий и осуществляет корректирующие мероприятия.

Примером проведения ВКК может служить проверка квалификации оператора, проведенная в соответствии с Приложением А МВИ-2-05. При этом данный метод позволяет контролировать не только оператора, но и пригодность индикаторных трубок и аспиратора для отбора пробы.

Прослеживаемость движения пробы

Это возможность отследить весь «жизненный цикл» пробы от момента отбора до выдачи результата заказчику.

При этом должна быть возможность посмотреть, кто отбирал пробу, кто проводил анализ, какие растворы были приготовлены для этого анализа и т.д. Для этого каждой пробе должен присваиваться свой идентификационный номер, с которым проба должна проходить через следующие документы: акт отбора проб, журнал регистрации проб, протокол измерений. Все должно быть максимально прозрачно.

Отчетность

Для того чтобы подтвердить выполнение всех требований лаборатория должна предоставить огромное количество отчетов: журналов, протоколов и т.д. () Мы решили эту проблему с помощью автоматизации: создали для себя программу ЛИМС «Н-лаб» , которая значительно упрощает работу.

Главная > Документ

Внутрилабораторный контроль качества лабораторных исследований

ОБЩИЕ ПОЛОЖЕНИЯ
Согласно определениям экспертов Международного Союза чистой и прикладной химии (1993) и Всемирной Организации здравоохранения (1981), под внутрилабораторным контролем качества понимают систему осуществляемых персоналом лаборатории мероприятий, которые направлены как на оценку того, достаточна ли надежность получаемых результатов для выдачи их лабораторией, так и на устранение причин неудовлетворительных характеристик этих результатов. При этом результаты выдаются лабораторией как для того, чтобы способствовать принятию клинического решения, так и для эпидемиологических либо исследовательских целей. В более общем смысле, внутрилабораторный контроль качества применим к любым этапам процесса получения аналитических результатов, начиная с определения потребностей клиницистов через этапы получения биоматериала и измерения количества анализируемых веществ и до этапа выдачи заключения. Целью его является обеспечение того, чтобы аналитический процесс удовлетворял предварительно установленным требованиям к точности анализа и величинам отклонения. Проведение внутрилабораторного контроля качества охватывает три принципиальных области:
    контроль качества преаналитической стадии; контроль качества аналитической стадии (статистический контроль качества); оценку результатов внутрилабораторного контроля качества.
На преаналитической стадии предусмотрен контроль:
    соответствия лабораторных приборов и оборудования планируемым видам исследований; оптимизации приготовления реактивов и процедур выполнения анализа; соответствия применяемых аналитических процедур рекомендованным либо унифицированным методам исследований; уровня подготовленности персонала. На аналитической стадии контролируют: идентичность свойств контрольных образцов (например, слитой сыворотки) и исследуемых проб; стабильность условий, в которых оцениваются базовые характеристики (точность и отклонение) данного метода анализа; идентичность обработки контрольных образцов и исследуемых проб на всех этапах исследования; простоту и ясность представления результатов внутрилабораторного контроля качества; наличие четких критериев браковки результатов анализа (контрольных правил).
Оценка результатов внутрилабораторного контроля качества предусматривает:
    тщательный анализ ошибок каждого цикла внутрилабораторного контроля качества и принятие корригирующих мер; регулярный анализ результатов внутри-лабораторного (а также межлабораторного) контроля качества в динамике с целью выявления тенденций в работе лаборатории.
Определения
При проведении контроля качества лабораторных исследований используются следующие термины. Метод референтный - метод, показывающий максимальную аналитическую специфичность и точность результатов измерения. Результаты, полученные с его помощью, позволяют дать оценку результатам анализа, полученным другими методами. Случайные ошибки- отклонения в повторном определении каких-либо параметров в одной и той же пробе, изменяющиеся непредсказуемым образом. Систематические ошибки- погрешности, одинаковые по знаку, происходящие от определенных причин, влияющих на результат либо в сторону увеличения, либо в сторону уменьшения. Систематические ошибки можно предусмотреть и устранить или ввести соответствующие поправки. Величина систематической ошибки характеризует точность результатов исследования. Контрольный материал - материал, предназначенный для осуществления контроля качества лабораторных исследований и приближающийся по наиболее существенным свойствам к исследуемому и анализируемому материалу. Контроль качества внутренний (внутрилабораторный) - система мер, предназначенных для оценки качества результатов анализа, полученных в лаборатории. Внешняя оценка качества - контроль сравнимости результатов, полученных в нескольких лабораториях на одном и том же контрольном материале одними и теми же методами или методами, дающими статистически достоверно совпадающие результаты. Сходимость измерений (precision, Konvergenz) - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях (воспроизводимость в серии). Воспроизводимость измерений (reproducibility, Reproduzierbarkeit) - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными людьми). Точность измерений (accuracy, Genauigkeit) - качество измерений, отражающее близость их результатов к истинному (референтному) значению измеряемой величины.
Порядок осуществления внутрилабораторного контроля качества
Внутрилабораторный контроль качества включает контроль воспроизводимости и точности (правильности) и может осуществляться с помощью методов, использующих специальные контрольные материалы или средства ряда методов, не требующих контрольных материалов. Внутрилабораторный контроль качества предусматривает оценку деятельности всего медперсонала, участвующего в доаналитичес-ком, аналитическом и постаналитическом этапах работы, так как на любом из них возможны ошибки, связанные с подготовкой больного к исследованию, забором пробы, ее подготовкой к исследованию, хранением образцов и т. д. В конечном счете, возможны неточности при выписке и регистрации готовых анализов, а также в их трактовке. Наиболее частые ошибки, не зависящие от работы лаборатории, но искажающие конечный результат:
    Положение тела, прием пищи перед забором крови, чрезмерно тугой жгут, наложенный на плечо, физическое или эмоциональное напряжение больного могут повлиять на результаты исследований липидного, углеводного обменов, общего белка, гормонов, факторов свертывания крови. Влияние характера питания, качественный состав пищи важен при исследовании активности ферментов. Известно более 130 ферментов, подверженных влиянию диеты. Биологические ритмы. Время взятия крови влияет на показатели исследования гемоглобина, мочевины, общих липидов. Содержание калия, общего белка, железа, билирубина может варьировать в течение часа. Сыворотка с признаками гемолиза. Влияние некоторых лекарств: исследуют содержание железа сыворотки на фоне приема препаратов железа, липидный обмен - на фоне гиполипидемической терапии. Лекарственные вещества также могут влиять, интерферируя с определенными реактивами в процессе исследования. Нет препаратов, не изменяющих лабораторные показатели, но не для всех установлен механизм действия. Например, на определение глюкозы влияет прием аскорбиновой кислоты, резерпина, кортикостероидов, эстрогенов, кофеина, тетрациклина и др. Перед исследованием ка-техоламинов за 2-3 дня должны быть исключены тетрациклины, резерпин, элениум, и др., а из пищевого рациона - бананы, сыр, крепкий чай, кофе. Нельзя проводить гематологические исследования после физиотерапевтических процедур и рентгеновского облучения; реакцию Вассерма-на - у лихорадящих больных, после приема алкоголя, наркоза, травм и хирургических вмешательств, приема наркотических препаратов и препаратов наперстянки. Нельзя исследовать активность кислой фосфатазы после массажа предстательной железы.
Упомянутые выше источники погрешностей не поддаются количественному контролю, который изложен в разделе, но ввиду трудности распознавания вскрывать их необходимо, регулярно инструктируя средний персонал отделений о правилах сбора и условиях хранения биологического материала для различных исследований.
Метод контрольных карт
Ежедневно работник лаборатории (лаборант, врач-лаборант) при проведении всех видов анализа, наряду с опытными пробами, исследует контрольный материал. Контроль должен охватывать практически каждое лабораторное исследование, результат которого имеет количественный или качественный характер. Определение содержания компонентов в контрольном материале проводят одновременно с исследованием опытных проб, при этом вместо сыворотки или плазмы крови берут контрольный материал в таком же количестве. Определение каждого компонента в контрольном материале проводят методом, применяемым в данной лаборатории. Результаты ежедневно регистрируются. В конце месяца (или другого срока, который предварительно или внезапно установлен начальником лаборатории или контрольным органом) проводится статистический анализ исследований контрольного материала с построением контрольной карты, расчетом среднеквадрати-ческого отклонения, ошибки средней величины, коэффициента вариации и сопоставление его с допустимым пределом ошибки. Статистический анализ исследований проводится также в особых случаях, а именно:
    если результаты исследования контрольного материала выходят за пределы ±2; при налаживании нового метода; при использовании новой измерительной аппаратуры, новой партии реактивов, новой серии контрольного материала и т.д.; при приеме на работу нового сотрудника. При анализе результатов наиболее удобным и распространенным является метод контрольных карт (метод Shewhart).
Согласно этому методу, в течение первых 20 дней следует проводить по 2 параллельных определения каждого компонента в контрольном материале. За результат принимают среднее арифметическое значение из 2-х параллельных определений. Если какое-нибудь значение существенно отличается от предыдущих, то его рассматривают как грубую ошибку. Из 20-ти ежедневных результатов вычисляется среднее значение:
Контроль работы приборов и оборудования
Применяемая в настоящее время широкая номенклатура лабораторных исследований требует использования самых разнообразных технических средств, и их перечень составляет десятки наименований. Вся лабораторная техника может быть подразделена на общую, необходимую для большинства исследований, и специальную, зависящую от вида выполняемых исследований. В общую лабораторную технику входит аппаратура для:
    дистилляции воды, взвешивания, центрифугирования, нагревания и термостатирования, перемешивания и встряхивания.
Специальная аппаратура составляет широкий перечень фотометров, анализаторов и др. приборов, выпускаемых различными фирмами. Для биохимических исследований применяются анализаторы открытого и закрытого типа. К закрытым относят системы, в которых используются реактивы фирмы-производителя, прописи их обычно не известны. Практически это все типы приборов, работающих на диагностических полосках. Открытые системы, напротив, характеризуются возможностью введения в компьютер всех необходимых параметров реакции, использования реактивов различных фирм, что является наиболее предпочтительным в эксплуатации. В гематологии в настоящее время получили широкое применение автоматические счетчики, позволяющие осуществить подсчет форменных элементов крови - эритроцитов, лейкоцитов, тромбоцитов, клеток костного мозга, а также средний объем эритроцитов, величину гематокрита, среднее содержание гемоглобина в одном эритроците, осуществить запись эритроцитометрической кривой. Наибольшее распространение получили приборы, основанные на кондуктоме-трическом принципе измерения
Принципы оценки качества измерительных приборов
Комплекс организационно-технических мероприятий, позволяющих контролировать технические и метрологические характеристики выпускаемых изделий, осуществляется на основе положения Государственной системы обеспечения единства измерений (ГСИ). Для вновь разработанных приборов и установок проводят государственные испытания. Для изделий, изготовленных серийно, проводят испытания на заводе-изготовителе при выпуске из производства или в тех случаях, когда изменяется конструкция, технология, материалы, влияющие на характеристики или на работоспособность прибора. Измерительные приборы, подлежат проверке в соответствии с ГОСТ 8002-71. В соответствии с руководством по метрологическому обеспечению средств измерений определен порядок и сроки проверки измерительных приборов в клинико-диагностических лабораториях. Измерительные приборы проверяются ведомственными метрологическими органами в соответствии с инструкцией, в которой указываются производимые операции и средства проверки. Проверке подлежат все технические и метрологические показатели, записанные в паспорте, прилагаемом к прибору. Работать на непроверенном приборе запрещается. Погрешность прибора входит в общую погрешность анализа. Погрешность анализа включает погрешности лаборанта, отбора пробы, дозирования, измерения и т.д. Составляющие погрешности анализа определяются конкретной технологией проведения исследования, его этапами. В связи с тем что проверочными средствами клинико-диагностические лаборатории не располагают, некоторые характеристики фотометрических абсорбциометров могут быть проверены с помощью контрольных светофильтров, входящих в комплект к прибору. Проверка может быть также осуществлена с помощью специально приготовленных растворов - жидких индикаторов, которые в определенной области спектра имеют постоянные спектральные характеристики. Жидкие индикаторы могут быть приготовлены непосредственно в лаборатории и позволяют проводить проверку точности измерений в различных областях спектра (от 300 до 550 нм). Пик абсорбции светофильтра должен находиться вблизи от пика абсорбции жидких индикаторов. Кроме того, приготовив соответствующие разведения данных растворов, можно проверить линейность данного абсорбциометра. Измерения проводятся в кювете с длиной оптического пути 10 мм. Таблица Спектральная характеристика контрольных растворов

Наименование раствора

Пик абсорбции, нм

Значения экстпнкций

Сульфат меди

Сульфат кобальта аммония

Хромат калия

Приготовление растворов по проверке спектральных характеристик фотометров
Сульфат меди в количестве 20 г растворить в 10 мл концентрированной серной кислоты, количественно перенести в мерную колбу на 1000 мл, довести объем при комнатной температуре до метки дистиллированной водой. Хранить в темной посуде. Сульфат кобальта аммония в количестве 14,481 г растворить в 10 мл концентрированной серной кислоты, перенести в мерную колбу на 1000 мл, после достижения комнатной температуры довести объем до метки дистиллированной водой. Хранить плотно закрытым в темной посуде. Хромат калияв количестве 40 мг растворить в 600 мл 0,05 н раствора КОН в мерной колбе на 1000 мл, довести объем до метки 0,05 н раствором КОН.
Контроль качества посуды
В общую составляющую лабораторной погрешности входит погрешность дозирования. Поэтому совершенно особой проблемой является проверка применяемых дозирующих и мерных средств на точность показаний. Из практики известно, что около 30-40% всей мерной посуды отбраковывается ввиду ее плохого качества. Оценка точности проводится на аналитических весах гравиметрическим способом: массу воды, составляющую объем дозирующего объекта, многократно (не менее 10 раз) взвешивают на аналитических весах. Переведя массовые единицы в объемные, рассчитывают погрешность мерного объема по следующей формуле:
  1. Техника лабораторных исследований

    Примерная программа

    Примерная программа учебной дисциплины разработана на основе Федерального государственного стандарта по специальности среднего профессионального образования 060105 Медико-профилактическое дело.

  2. О системе управления качеством и безопасностью медицинской деятельности в части контроля объемов, сроков, качества и условий предоставления медицинской помощи в Красноярском крае и внутреннего контроля (методические рекомендации)

    Методические рекомендации

    О системе управления качеством и безопасностью медицинской деятельности в части контроля объемов, сроков, качества и условий предоставления медицинской помощи в Красноярском крае и внутреннего контроля (методические рекомендации).

  3. Пояснительная записка

    Заведующая кафедрой клинической лабораторной диагностики учреждения образования «Гомельский государственный медицинский университет», доктор медицинских наук, профессор И.

  4. Квалификационные тесты по клинической лабораторной диагностике

    Тесты

    в) наука, помогающая выработке у врача способность к нравственной ориентации в сложных ситуациях, требующих высоких морально-деловых и социальных качеств

  5. «Лабораторная диагностика России» 2008/2009 Стандартизация в лабораторной медицине: цели, средства, внедрение

    Документ

    Основная задача клинической лаборатории состоит в том, чтобы на основании результатов исследования проб биожидкостей, экскретов или тканей человека дать объективную оценку состояния и содержания определенных компонентов его внутренней

Внутрилабораторный контроль качества выполнения измерений/испытаний, как и любая другая деятельность, начинается с планирования.

Начальным этапом планирования является анализ применяемых в лаборатории методик измерений, методов измерений/испытаний, определяемых показателей и объектов измерений/испытаний.

Результатом анализа должно быть выделение субдисциплин, представительных объектов измерений/испытаний и уровней измеряемых величин, которые будут воспроизводиться контрольными образцами, и составление плана внутрилабораторного контроля.

Понятие «субдисциплина» установлено в документе EA-4/18 TA:2010 «Руководство по уровню и частоте участия в проверках квалификации» (Guidance on the level and frequency of proficiency testing participation) и представляет область технической компетентности, определенную как минимум одним методом измерений/испытаний, свойством и продуктом, которые взаимосвязаны (например, определение мышьяка в почве методом ICP-MS).

Ближайшие семинары:

«Концепция нового стандарта ISO/IEC 17025:2017. Разработка, внедрение и поддержание систем менеджмента лабораторий» — 30-31 июля

Семинар проводится с целью оказания помощи лабораториям и консультантам по организации работ по пересмотру и доработке (разработке) документов систем менеджмента лабораторий в соответствии с требованиями новой версии стандарта ISO/IEC 17025:2017…

«Точность измерений в соответствии с СТБ ИСО 5725» — 13-14 августа

Установление показателей точности методик выполнения измерений является основным требованием при разработке (ГОСТ 8.010) и метрологическом подтверждении пригодности методик выполнения измерений (ТКП 8.006-2011). Международный подход к системе показателей точности и процедурам их оценивания изложен в СТБ ИСО 5725-2002 (части 1 – 6) «Точность (правильность и прецизионность) методов и результатов измерений». Правильное применение положений данного стандарта требует не только знания основных понятий, терминов и определений, но и хороших навыков в применении методов статистической обработки результатов измерений…

Субдисциплина может содержать более одного:

  • метода измерений/испытаний (в очень редких случаях),
  • определяемого показателя или
  • объекта измерений/испытаний

до тех пор, пока можно подтвердить эквивалентность и сопоставимость измерений/испытаний.

Что подразумевается под «эквивалентностью» и «сопоставимостью»?

Вернемся к тому, что основным процессом деятельности лаборатории является процесс измерений или испытаний, основным результатом или «продуктом» этой деятельности – результат измерения. К любой деятельности, к любому «продукту» предъявляются требования к качеству. Если говорить о методиках измерений определенных показателей в определенных объектах измерений/испытаний качество измерений/испытаний будет в первую очередь определяться системой показателей точности, а также другими рабочими характеристиками методики измерений.

Эквивалентность и сопоставимость измерений заключается в том, что метод измерений/испытаний или, в редких случаях, несколько методов измерений/испытаний будут одинаково себя проявлять и иметь одинаковые показатели точности в отношении одного или нескольких показателей и одного или нескольких объектов измерений/испытаний.

Если лаборатория использует методику измерений, описывающую метод ICP-MS для определения металлов в объектах окружающей среды, то для определения субдисциплин необходимо провести анализ реализации методики измерений различных металлов (например, кадмий Cd, свинец Pb, мышьяк As) на разных объектах (например, почва, вода, осадок сточных вод) с точки зрения эквивалентности показателей точности и сопоставимости проводимых измерений.

Например, если этапы реализации методики измерений одинаковы для всех определяемых показателей и контролируемых объектов (например, одинаковые пробоподготовка, процедура калибровки оборудования, аналитическое измерение), что подтверждается при валидации/верификации методики измерений и фиксируется в значениях показателей точности: прецизионности и правильности, то такую методику, показатели и объекты можно объединить в одну субдисциплину.

ВОЗМОЖНО ДЛЯ ВАС БУДЕТ ПОЛЕЗНО!

Предлагаем Вам посетить семинар по данной теме: «Контроль качества измерений в лабораториях: внутрилабораторный контроль и проверки квалификации»

В рассмотренном выше примере, поскольку подготовка проб воды отличается от подготовки проб почвы и осадка сточных вод, а принцип измерения металлов схож, на основании данных верификации методики измерений в лаборатории, можно выделить две субдисциплины:

  • определение содержания металлов методом ICP-MS в почве и осадке сточных вод;
  • определение содержания металлов методам ICP-MS в воде.

План внутрилабораторного контроля должен содержать следующую информацию:

  • наименование субдисциплины: метод измерений/испытаний или, в редком случае, методы измерений/испытаний; показатели и объекты измерений/испытаний, которые охватывает субдисциплина;
  • методики измерений, соответствующие субдисциплине (например, перечень методик измерений из области аккредитации);
  • контрольные образцы и реализуемые ими уровни измеряемых величин;
  • контролируемый показатель точности или другая рабочая характеристика методики измерений (повторяемость, лабораторное смещение, предел обнаружения и т.п.);
  • периодичность проведения внутрилабораторного контроля;
  • ответственный исполнитель за проведение внутрилабораторного контроля;
  • ссылка на конкретный способ внутрилабораторного контроля (например, контрольная карта средних арифметический, контрольная карта кумулятивных сумм, t-критерий, предел промежуточной прецизионности и т.п.).

В качестве контрольных образцов могут выбираться холостые пробы, стабильный внутрилабораторный материал, стандартные образцы и сертифицированные стандартные образцы, реальные контролируемые пробы. Основное требование – контрольные образцы по составу, матрице и уровню измеряемых величин должны быть по возможности максимально близки к реальным объектам измерений/испытаний.

Полезную информацию по теме Внутрилабораторного контроля вы можете получить из нашего обучающего видео:

Уровни измеряемых величин, воспроизводимые контрольными образцами, рекомендуется выбирать, опираясь на:

  • законодательные требования к допустимым значениям измеряемых величин (например, предельно допускаемое содержание вредных веществ);
  • наиболее часто встречающиеся значения из практики проведения измерений/испытаний конкретных объектов измерений/испытаний;
  • критические значения измеряемых величин, при которых рабочие характеристики методики измерений могут оказывать существенное влияние на качество проводимых измерений/испытаний и результатов измерений.

Перечень рабочих характеристик методики измерений, контролируемых при внутрилабораторном контроле, выбирается лабораторией на основании данных валидации/верификации методики измерений с учетом их значимого влияния на измерения/испытания и результат измерения. Обязательному контролю подвергаются показатели точности: прецизионность и лабораторное смещение (последний, только в случае возможности лабораторией установить опорное значении).

Частота анализа контрольного образца и реализации конкретной процедуры внутрилабораторного контроля в отношении контролируемой рабочей характеристики методики измерений устанавливается лабораторией в зависимости от:

  • объема анализируемых объектов измерений/испытаний в рамках конкретной субдисциплины (100 контролируемых объектов в день или 1 контролируемый объект в неделю);
  • уровня риска, обнаруживаемого лабораторией в области, в которой она работает, или в методологии, которую она использует (определение жирности в молоке или содержания ртути в пробе воды);
  • предыдущих результатов внутрилабораторного контроля (можно установить «плавающую» частоту, в зависимости от количества положительных или отрицательных результатов
  • предыдущего внутрилабораторного контроля);
  • любых законодательных требований по частоте реализации внутрилабораторного контроля;
  • степени применения других процедур контроля качества измерений/испытаний (например, участия в проверках квалификации).

План внутрилабораторного контроля, как правило, составляется на год.

Пример плана внутрилабораторного контроля представлен ниже в таблице.

Планирование, как и остальные этапы внутрилабораторного контроля, должно быть описано в документах системы менеджмента лаборатории. Любые изменения, вносимые в план внутрилабораторного контроля в течение срока его действия, должны документироваться.

Библиография

ГОСТ 27384-2002 Вода. Нормы погрешности измерений показателей состава и свойств.

ГОСТ 31870-2012 Вода питьевая. Определение содержания элементов методами атомной спектрометрии (п.5) ICP-MS вода.

ГОСТ ISO 22036-2014 Качество почвы. Определение микроэлементов в экстрактах почвы с использованием атомно-эмиссионной спектрометрии индуктивно связанной плазмы (ИСП-АЭС).

Генеральный директор

_____________________

«____»_____________

1 Общие положения внутрилабораторного контроля лаборатории

1.1 Настоящая Процедура устанавливает порядок проведения внутрилабораторного контроля точности в испытательной лаборатории.

1.2 Внутрилабораторный контроль – Проблемы лаборатории (ВЛК) является одним из способов оценки качества работ отдельных исполнителей и в целом всей лаборатории

1.3 Объектом внутрилабораторного контроля качества в испытательной лаборатории является контроль результатов измерений при проведении испытаний.

1.4 Ответственность за подготовку и своевременную организацию внутрилаборатоного контроля в ЛРИ возлагается на начальника ЛРИ.

1.5 Средствами лабораторного контроля могут являться стандартные образцы, аттестованные смеси, рабочие пробы – образцы с известным содержанием определяемого компонента.

2 Проведение внутрилабораторного контроля по контролю результатов измерений при проведении испытаний

Внутрилабораторный контроль результатов измерений при проведении испытаний проводится путем:

Проверки правильности расчетов, записей результатов измерений, правильности округлений, величины погрешности;

Многократного исследования характеристик одной и той же продукции.

3 Порядок проведения внутрилабораторного контроля в испытательной лаборатории

3.1 Внутрилабораторный контроль в ЛРИ проводит и осуществляет, как начальник ЛРИ, так и непосредственно каждый специалист, выполняющий исследования, что отражается в журнале по проведению ВЛК.

3.2. Внутрилабораторный контроль точности проводится в течение всего периода работы ЛРИ, не реже 1 раза в квартал.

3.3 Сроки и кратность проведения

3.3.1 Постоянно внутрилабораторному контролю подлежат условия хранения ОБРАЗЦОВ, проверка правильности расчетов результатов испытаний, ведение лабораторной документации, оформление протоколов, обсчет расхождений между параллельными испытаниями и т.д.

3.3.2 Ежеквартально внутрилабораторный контроль – проверка градуировочных зависимостей, самопроверка правильности проведения испытания ан путем внесения внутреннего стандарта, определения одного и того же показателя в одном образце разными исполнителями, проверка выполнения хода и, точного соблюдения условий его проведения.

3.4. Результаты работ по внутрилабораторному контролю правильности проводимых исследований должны обсуждаться на собраниях коллектива ИЛ с разбором всех выявленных нарушений испытания и замечаний

3.5. Основными элементами внутрилабораторного контроля точности лабораторных испытаний являются:

3.5.1. Сроки, условия хранения и приготовления объединенной пробы, применяемых применяемых при лабораторных испытаниях, определены действующими методиками выполнения измерений.

3.5.2 Внутрилабораторный контроль повторяемости результатов параллельных определений при анализе одной пробы следует проводить не менее, чем по двум параллельным результатам анализа, полученным в одинаковых условиях. Оперативный внутрилабораторный контроль повторяемости является предупредительным и проводится при каждом испытании.

3.5.3 Оперативный контроль в лаборатории следует проводить по двум результатам анализа одной и той же пробы, в одинаковых условиях разными исполнителями.

3.6.Результаты проверок подлежат регистрации в Журнале внутрилабораторного контроля (Приложение А)

3.7. Ответственность за организацию и проведение внутрилабораторного контроля качества в ИЛ несет начальник ЛРИ

Приложение А

Форма журнала внутрилабораторного контроля

Дата Номер пробы Наименование Результаты анализа Заключение о качестве результатов измерений
первичный повторный ОБЪЕКТ Метода анализа Определяемого элемента первичного повторного
1 2 3 4 5 6 7 8 9

ЛИСТ УЧЕТА ИЗМЕНЕНИЙ

Раздел Номер изменения п/п Дата замены Фамилия лица, проводившего изменения Подпись лица, проводившего изменения
№ п/п наименование раздела
1 2 3 4 5 6

ммммм